ShareChat
click to see wallet page
search
#✍ எக்ஸாம் குறிப்பு #🤔 Unknown Facts
✍ எக்ஸாம் குறிப்பு - Finite Series 1+2+3+...+1=n(n+1) @sudharsan] 2+4+6+...+2n=n(n+1) 1+3+5+_+(2n-1)=n n(2k+n-1) k+(k+1)+(k+2)+...+(k+1-1)= n(n+1)(2n+1) 1- +2- +3- +...+1- = -1) ="(4n2 +.. + (211-1)2 12 + 32 + 52 "(1+1)] 13 + 23 +33 +...+ 113 (2n-1)' =n? (2n? -1) 13 +33 +53 + 1+2 +..= 2  @ 2! Finite Series 1+2+3+...+1=n(n+1) @sudharsan] 2+4+6+...+2n=n(n+1) 1+3+5+_+(2n-1)=n n(2k+n-1) k+(k+1)+(k+2)+...+(k+1-1)= n(n+1)(2n+1) 1- +2- +3- +...+1- = -1) ="(4n2 +.. + (211-1)2 12 + 32 + 52 "(1+1)] 13 + 23 +33 +...+ 113 (2n-1)' =n? (2n? -1) 13 +33 +53 + 1+2 +..= 2  @ 2! - ShareChat