"Scientific Approach"
ShareChat
click to see wallet page
@440841721
440841721
"Scientific Approach"
@440841721
follow करे www.youtube.com/scientificapproach
Maths#maths
maths - ShareChat
Maths #maths #math
math - ٤ ٥  ٤ ٦ ٨ ٠ Jajaran cenjang Lingkacn dunng Tenbereng = 2 (a+k) Apotemc K L= 0 . t Sudu+ பong berdecwcm bernilai /8oe L 0 = 2 Zস Trapesium LA-Lel 0 meno Karcna 90 ८C = Semberons T JCc 1 ( ( 1.$1!0` 42 x t hooop dicnecr   lingkcon K= 0+6+C+d 2 Beah ketupat ८F+८ 0 LC+LE =|801 TCx r2 k = TL x c T * 2n A0G Ljurin9 x L 2 ^ 02 K = 4 * S 360' Layang -Iouono)  0 Punicng busur K %0 Panjarg Luac Juring AOB k = 2 (AD+A৫) busuc AB c ೭ 4 4 luas lingkeron Ke . lingkacac L= daiam  Lingkaran Segitiga 24 Lk  = ^= Segitig 2 K Sudut Jumtah Vscs-a)(s-b)s-c) [ = Ietic SudU+NYA $ Lingkaran luar Segitiga 180 0 b +b+C K = a b c h- $= |< 2* ^ *F 2 44 I9 C Rumus Horon 01 *6 $ ( $-C) ( $-৬)($-c) L४ 4 vS($-a)($-b)($ -C) dengon Kel $= 2 ಗ  ٤ ٥  ٤ ٦ ٨ ٠ Jajaran cenjang Lingkacn dunng Tenbereng = 2 (a+k) Apotemc K L= 0 . t Sudu+ பong berdecwcm bernilai /8oe L 0 = 2 Zস Trapesium LA-Lel 0 meno Karcna 90 ८C = Semberons T JCc 1 ( ( 1.$1!0` 42 x t hooop dicnecr   lingkcon K= 0+6+C+d 2 Beah ketupat ८F+८ 0 LC+LE =|801 TCx r2 k = TL x c T * 2n A0G Ljurin9 x L 2 ^ 02 K = 4 * S 360' Layang -Iouono)  0 Punicng busur K %0 Panjarg Luac Juring AOB k = 2 (AD+A৫) busuc AB c ೭ 4 4 luas lingkeron Ke . lingkacac L= daiam  Lingkaran Segitiga 24 Lk  = ^= Segitig 2 K Sudut Jumtah Vscs-a)(s-b)s-c) [ = Ietic SudU+NYA $ Lingkaran luar Segitiga 180 0 b +b+C K = a b c h- $= |< 2* ^ *F 2 44 I9 C Rumus Horon 01 *6 $ ( $-C) ( $-৬)($-c) L४ 4 vS($-a)($-b)($ -C) dengon Kel $= 2 ಗ - ShareChat
Maths #maths formula #maths #Maths guru #exams
Maths guru - ShareChat
Maths#maths #math tricks
maths - POLYGON Polygon Basics Polygon closed figure with 3 or more sides 2 Types: polygon 180' all diagonals inside Convex all interior angles 7 Concave polygon at least one interior 180', some diagonals outside: ongle 2 Regular Polygon n-sided polygon hqs: Always convex n vertices interior All sides equdl angles  All interior gngles equql n exterior qngles. Interior Angles  Exterior Angles 2) x 1809 Sum of interior angles (n Sum of all exterior angles = 3609 360 Each interior angle (regular polygon): Each exterior angle (regular polygon): [(n 2) 18091 Internal angle + External angle = 1809 360% Number of sides: n Exterior angle Diagonals 3) Number of diogonols in 0 polygon Regular Hexagon Large diqgonals: FC = AD = BE = 2g Number of sides = 6 Short diagonals: FD BF = V3a 0B Each interior angle = १२०० Regular hexagon = 6 equilateral triangles  Each exterior angle  60% Also = 3 rhombus of equql qred Number of diagonals = 9 (3v3/2)q2' Area Perimeter 6a Circumrodius R = 0 Area Relations in Regular Hexagon Triangle EAC is equilateral If P, Q R dre midpoints: APQR is equilateral with side (3a/2) with side V3a Area(EAC) Area(APQR) 2 8 Area(hexagon)| Area(ABCDEF) Regular Octagon] 2(12' Area 1)02 Number of sides = 8 Perimeter 8a Inradius: r = 2v2 _ 2 135% Each interior angle 12+12 . 0 Each exterior angle = ४५९ Circumradius: R = 12 - 12 Number of diagonals = 20 POLYGON Polygon Basics Polygon closed figure with 3 or more sides 2 Types: polygon 180' all diagonals inside Convex all interior angles 7 Concave polygon at least one interior 180', some diagonals outside: ongle 2 Regular Polygon n-sided polygon hqs: Always convex n vertices interior All sides equdl angles  All interior gngles equql n exterior qngles. Interior Angles  Exterior Angles 2) x 1809 Sum of interior angles (n Sum of all exterior angles = 3609 360 Each interior angle (regular polygon): Each exterior angle (regular polygon): [(n 2) 18091 Internal angle + External angle = 1809 360% Number of sides: n Exterior angle Diagonals 3) Number of diogonols in 0 polygon Regular Hexagon Large diqgonals: FC = AD = BE = 2g Number of sides = 6 Short diagonals: FD BF = V3a 0B Each interior angle = १२०० Regular hexagon = 6 equilateral triangles  Each exterior angle  60% Also = 3 rhombus of equql qred Number of diagonals = 9 (3v3/2)q2' Area Perimeter 6a Circumrodius R = 0 Area Relations in Regular Hexagon Triangle EAC is equilateral If P, Q R dre midpoints: APQR is equilateral with side (3a/2) with side V3a Area(EAC) Area(APQR) 2 8 Area(hexagon)| Area(ABCDEF) Regular Octagon] 2(12' Area 1)02 Number of sides = 8 Perimeter 8a Inradius: r = 2v2 _ 2 135% Each interior angle 12+12 . 0 Each exterior angle = ४५९ Circumradius: R = 12 - 12 Number of diagonals = 20 - ShareChat
Maths #math #maths formula
maths formula - ShareChat
Maths #maths #maths formula #Maths guru
Maths guru - ShareChat
Maths #maths #maths formula
maths formula - Sets & Relations Complefe Formulas १. SETS BASIC DEFINITIONS 2. TYPES OF SETS Set: A well-defined collection of objects: Empty Null sef = only one element Singleton set Element: An object belonging to sef 2 Finite set belongs to A a € A Infinite set belong  does nof To A U a#A Universal sef Equal sets Equivalenf sefs 3. SUBSETS ASB -> A is Q subsef of B 4. POWER SET Power set P(A) = set of all subsets of A A is a proper subset of B A subsef B ) elements, Then |P(A)| = 2" Number of subsets of a set with n If A has 2n elements 6. PROPERTIES OF SET OPERATIONS  5. OPERATIONS ON SETS Commufqfive Iqws: AUB = BUA Union: AUB = {x : x E A or x & B} An B = BnA Intersection: AnB = {x:x eA and xeB} Associafive laws: (AUB)UC = AU(BUc) Difference: A - B = {x : x E A ond x E B} (AnB)nc=An(Bnc) Complement: A = U - A Disfribufive laws: Au(Bnc) = (AUB)n(Auc) An(BUC) = (AnB)U(AnC) Idenfify laws: AU0 = A AnU = A 7 DE MORGANS LAWS AUB) = AnB' 8. VENN DIAGRAM RESULTS (An B)' = A'UB' n(AUB) = n(A) + n(B) - n(AnB) n(A)+n(B)+n(C)-n(An B) n(AUBUC) n(Bnc) -n(CnA)+n(AnBnc) १०. TYPES OF RELATIONS ११. EQUIVALENCE RELATION 9. RELATIONS A relation R is an equivalence] A relation R from set A to set B Reflexive relqtion if it is: Symmetric  subset of A x B is Reflexive  Number of relafions from A fo B Symmetric Tronsitive Transitive 2nm (where n = elements in A, elements in B) m Sets & Relations Complefe Formulas १. SETS BASIC DEFINITIONS 2. TYPES OF SETS Set: A well-defined collection of objects: Empty Null sef = only one element Singleton set Element: An object belonging to sef 2 Finite set belongs to A a € A Infinite set belong  does nof To A U a#A Universal sef Equal sets Equivalenf sefs 3. SUBSETS ASB -> A is Q subsef of B 4. POWER SET Power set P(A) = set of all subsets of A A is a proper subset of B A subsef B ) elements, Then |P(A)| = 2" Number of subsets of a set with n If A has 2n elements 6. PROPERTIES OF SET OPERATIONS  5. OPERATIONS ON SETS Commufqfive Iqws: AUB = BUA Union: AUB = {x : x E A or x & B} An B = BnA Intersection: AnB = {x:x eA and xeB} Associafive laws: (AUB)UC = AU(BUc) Difference: A - B = {x : x E A ond x E B} (AnB)nc=An(Bnc) Complement: A = U - A Disfribufive laws: Au(Bnc) = (AUB)n(Auc) An(BUC) = (AnB)U(AnC) Idenfify laws: AU0 = A AnU = A 7 DE MORGANS LAWS AUB) = AnB' 8. VENN DIAGRAM RESULTS (An B)' = A'UB' n(AUB) = n(A) + n(B) - n(AnB) n(A)+n(B)+n(C)-n(An B) n(AUBUC) n(Bnc) -n(CnA)+n(AnBnc) १०. TYPES OF RELATIONS ११. EQUIVALENCE RELATION 9. RELATIONS A relation R is an equivalence] A relation R from set A to set B Reflexive relqtion if it is: Symmetric  subset of A x B is Reflexive  Number of relafions from A fo B Symmetric Tronsitive Transitive 2nm (where n = elements in A, elements in B) m - ShareChat
Biology #biology #NEET PREPETION
NEET PREPETION - CLASS AVEQ The characterustics] Potuue oue te prosence 0b +೦೦ bbಲ Hom eolhemic.ie tamm blooded onio మ SEun dxy & பயு toL_Lonill 920d exceph Le cbatcl oilgLond +2 Heod [ Pur chombekd _ Respure Harougb_Lupos { Oooe> ctH hollou Q ப pheumabc buxi Lzatioo &intemo& Se XeA Bepecote ೨- 04& OYporo &9, Crow, Pien Pam ot Y೨l . ]12023 09 CLASS AVEQ The characterustics] Potuue oue te prosence 0b +೦೦ bbಲ Hom eolhemic.ie tamm blooded onio మ SEun dxy & பயு toL_Lonill 920d exceph Le cbatcl oilgLond +2 Heod [ Pur chombekd _ Respure Harougb_Lupos { Oooe> ctH hollou Q ப pheumabc buxi Lzatioo &intemo& Se XeA Bepecote ೨- 04& OYporo &9, Crow, Pien Pam ot Y೨l . ]12023 09 - ShareChat
English #english #grammer
english - NOUN NUMBER & GENDER S NOUN NUMBER A SINGULAR NOUN 1 thing Definition Names one petson , ploce , animol, o L bou,` book , pe1 Example PLURAL NOUN 2 Definition Names moie than one boys , books , pens Example Common Plual Rules book books > > box boxes es > babies baby ies ५ > > > leaf leaves f/fe =>ves > 7 GENDER 8 NOUN VVAN VNNNNNNNA VA MASCULINE GENDER 1 Ring' Definition Male Example unce man , 7 EEMININE GENDER 2 Definition Female Example queen , aunt woman, > COMMON GENDER 3 Can be_male o female Definition child, teacheh , student Example 7 NEUTER GENDER [tuble , book, city] Definition No Example gendex_ Pluiol nouns show numbe, nouns show sex Ov gendల type . NOUN NUMBER & GENDER S NOUN NUMBER A SINGULAR NOUN 1 thing Definition Names one petson , ploce , animol, o L bou,` book , pe1 Example PLURAL NOUN 2 Definition Names moie than one boys , books , pens Example Common Plual Rules book books > > box boxes es > babies baby ies ५ > > > leaf leaves f/fe =>ves > 7 GENDER 8 NOUN VVAN VNNNNNNNA VA MASCULINE GENDER 1 Ring' Definition Male Example unce man , 7 EEMININE GENDER 2 Definition Female Example queen , aunt woman, > COMMON GENDER 3 Can be_male o female Definition child, teacheh , student Example 7 NEUTER GENDER [tuble , book, city] Definition No Example gendex_ Pluiol nouns show numbe, nouns show sex Ov gendల type . - ShareChat
Maths #maths #maths formula
maths - Algebra Complete Formulas మ 2. LINEAR EQUATIONS १. ALGEBRAIC IDENTITIES (a + b)२ = a२ + २ab + b२ General form: ax + b = 0 -b (0- 0)2 = 02 _ 20b + b2 Solution:| X = (q + b)(d - b) = 02 _ b2 b)3 03 + 302b + 30b2 + b3 (a + ४. ARITHMETIC PROGRESSION (AP) (0 - bj3 = 03 _ 302b + 30b2 _ b3 General term: dn = a + (n - 1)d b) (02 _ 43 + b3 = (q + ab + b२) Sum of first n terms: ( -b) (02 _ a3 _ b3 = + ab + b२) 2 [2q + (n - 1)d] Sn a२ + b२ + c२ + २(ab + bc + ca ) a +b + c)2 = 2 (a+ 4) Also, Sn 3. QUADRATIC EQUATIONS Standard form: ax2 + bx + C = 0 BINOMIAL THEOREM 6 4ac =b + 1b2 _ Quadratic Formula: x 20 nCaxn 1a + nCoxn (x + এ)" = Discriminant (D): D = b2 40c nCzxn-242 . an *+ Nature of roots: Generdl term: Tr+1 = nCr xn-r dr D > 0 _ Reql & distinct D = ০ -> Real & equal D < 0 - No real roots 8. INDICES & EXPONENTS 0 Sum of roots = qm x qn = am+n Product of roots am-n (m)n = 5. GEOMETRIC PROGRESSION (GP) amn General term: dn = arn-1 00 Sum of first n terms: Sn = q(rn- 1),r#1 [ =1 Sum to infinity: $ = Ir| <1 9. LOGARITHMS loga1 = 0 FACTORIAL & COMBINATIONS loga9 a = n! = n(n - 2) loga (xy) | logax logay Permutation: np loga(y) logax - logay Combindtion : nCr logaxn logax n rl(n logx Change of base: logqX ' Relqtion: nP   nCr X r! loga Algebra Complete Formulas మ 2. LINEAR EQUATIONS १. ALGEBRAIC IDENTITIES (a + b)२ = a२ + २ab + b२ General form: ax + b = 0 -b (0- 0)2 = 02 _ 20b + b2 Solution:| X = (q + b)(d - b) = 02 _ b2 b)3 03 + 302b + 30b2 + b3 (a + ४. ARITHMETIC PROGRESSION (AP) (0 - bj3 = 03 _ 302b + 30b2 _ b3 General term: dn = a + (n - 1)d b) (02 _ 43 + b3 = (q + ab + b२) Sum of first n terms: ( -b) (02 _ a3 _ b3 = + ab + b२) 2 [2q + (n - 1)d] Sn a२ + b२ + c२ + २(ab + bc + ca ) a +b + c)2 = 2 (a+ 4) Also, Sn 3. QUADRATIC EQUATIONS Standard form: ax2 + bx + C = 0 BINOMIAL THEOREM 6 4ac =b + 1b2 _ Quadratic Formula: x 20 nCaxn 1a + nCoxn (x + এ)" = Discriminant (D): D = b2 40c nCzxn-242 . an *+ Nature of roots: Generdl term: Tr+1 = nCr xn-r dr D > 0 _ Reql & distinct D = ০ -> Real & equal D < 0 - No real roots 8. INDICES & EXPONENTS 0 Sum of roots = qm x qn = am+n Product of roots am-n (m)n = 5. GEOMETRIC PROGRESSION (GP) amn General term: dn = arn-1 00 Sum of first n terms: Sn = q(rn- 1),r#1 [ =1 Sum to infinity: $ = Ir| <1 9. LOGARITHMS loga1 = 0 FACTORIAL & COMBINATIONS loga9 a = n! = n(n - 2) loga (xy) | logax logay Permutation: np loga(y) logax - logay Combindtion : nCr logaxn logax n rl(n logx Change of base: logqX ' Relqtion: nP   nCr X r! loga - ShareChat