sudharsan
ShareChat
click to see wallet page
@900141203
900141203
sudharsan
@900141203
I love nature and maths💕💕💕
#🤔 Unknown Facts #✍ எக்ஸாம் குறிப்பு
🤔 Unknown Facts - Area of a Trapezoid క్తీ 2(0 + b) X h Area = Osudlharsan 3cm e.8. & 7cm 2(3 7) X6 Area = X 10 X 6 A= 30 cm2 Area of a Trapezoid క్తీ 2(0 + b) X h Area = Osudlharsan 3cm e.8. & 7cm 2(3 7) X6 Area = X 10 X 6 A= 30 cm2 - ShareChat
#🤔 Unknown Facts #✍ எக்ஸாம் குறிப்பு
🤔 Unknown Facts - Sine  The trigonometric function that is Sin]equal  the ratio of the side opposite 0 giuen angle to the hypotemuse Cosine The trigonometric function that is Cos to the ratio of the side adjacent to an equal angle to the hypotenuse acutel Tongent A straight line or plane that | Tan touches a curve or curved surface at a point but if extended does not cross it at that point Cotangent The ratio of the side adjacent Csc particular acute angle to the side opposite 10 0 gf the angle Secant The ratio of the hypotenuset Sec to the shorter side odjocent to on Qcute angle; The reciprocal of a cosine The ratio of the hypotenuset Cosecant Cos to the side opposite an acute angle The reciprocal of sine TERMS OF TRGONOMETRY Sine  The trigonometric function that is Sin]equal  the ratio of the side opposite 0 giuen angle to the hypotemuse Cosine The trigonometric function that is Cos to the ratio of the side adjacent to an equal angle to the hypotenuse acutel Tongent A straight line or plane that | Tan touches a curve or curved surface at a point but if extended does not cross it at that point Cotangent The ratio of the side adjacent Csc particular acute angle to the side opposite 10 0 gf the angle Secant The ratio of the hypotenuset Sec to the shorter side odjocent to on Qcute angle; The reciprocal of a cosine The ratio of the hypotenuset Cosecant Cos to the side opposite an acute angle The reciprocal of sine TERMS OF TRGONOMETRY - ShareChat
#✍ எக்ஸாம் குறிப்பு
✍ எக்ஸாம் குறிப்பு - PROPERTIES OF FRACTIONS Property Example 2*5 10 C bd 21 3*7 += 2 7 14 d 2. cosudharsa 3 15 b 3 +b = +7 = 2 + 7 q + b 3. 2٠7 + 3٠5 29 ad + bc 0 4. + bd 35 35 2*5 C 3*5 DC 6. If 50 2.೨ = 3 . 6 thcn ad = bc PROPERTIES OF FRACTIONS Property Example 2*5 10 C bd 21 3*7 += 2 7 14 d 2. cosudharsa 3 15 b 3 +b = +7 = 2 + 7 q + b 3. 2٠7 + 3٠5 29 ad + bc 0 4. + bd 35 35 2*5 C 3*5 DC 6. If 50 2.೨ = 3 . 6 thcn ad = bc - ShareChat
#💞Feel My Love💖
💞Feel My Love💖 - Osudharsan Osudharsan - ShareChat
#💞Feel My Love💖
💞Feel My Love💖 - udharsan udharsan - ShareChat
#💞Feel My Love💖
💞Feel My Love💖 - Osudharsan Osudharsan - ShareChat
#🤔 Unknown Facts #✍ எக்ஸாம் குறிப்பு
🤔 Unknown Facts - Determinants For every square matrix A = [ai] of order n; we can associate a number called determinant of square matrix Itis denoted by AI det(A) Evaluating Determinants १) Order One (2) Order Two: A=[a] a11 a17 A= |A|=|a| a21 ೩22 `    a11 812 |4| =a11 ೩22 ೩12 ೩21 ` (3) Order Three:  ೩21 ೩22' a11 ১13  d12 A= ১৯1  ೩22` ೩23 0 ১31 ೩32 d33  a11 ১12  313 ೩22 a21 ೩21 ` a23 03 ೩22 |4|= d12  + d13 821 872 ೩23 a11 832 d31 a31 ` ೩13 831 ೩12 ১31 012 ೩13 Properties Of Determinants (1) Property 1: Interchanging rows with columns (2) Property 2: Interchanging any wo TOWSI columns b2 (3) Property 3: When any [wo rowsl columns are equal b2 b  0 b2 b Determinants For every square matrix A = [ai] of order n; we can associate a number called determinant of square matrix Itis denoted by AI det(A) Evaluating Determinants १) Order One (2) Order Two: A=[a] a11 a17 A= |A|=|a| a21 ೩22 `    a11 812 |4| =a11 ೩22 ೩12 ೩21 ` (3) Order Three:  ೩21 ೩22' a11 ১13  d12 A= ১৯1  ೩22` ೩23 0 ১31 ೩32 d33  a11 ১12  313 ೩22 a21 ೩21 ` a23 03 ೩22 |4|= d12  + d13 821 872 ೩23 a11 832 d31 a31 ` ೩13 831 ೩12 ১31 012 ೩13 Properties Of Determinants (1) Property 1: Interchanging rows with columns (2) Property 2: Interchanging any wo TOWSI columns b2 (3) Property 3: When any [wo rowsl columns are equal b2 b  0 b2 b - ShareChat
#🤔 Unknown Facts #✍ எக்ஸாம் குறிப்பு
🤔 Unknown Facts - Pythagorean Theorem a२ +62 Sine, Cosine, and Tangent Formulas (Remember: SOHCAHTOA]  pposite Sin e hypotenuse hypotenuse adjacent opposite Cosine hypotenuse adjacent opposite' Tan gent . adjacent sudharsar Area ofa Triangle  bh A= 10. Area of Rectangle A=bh 11. Area of Parallelogram 4=bh १० Area and Circumference of Circles A = 1T2 C= २r Pythagorean Theorem a२ +62 Sine, Cosine, and Tangent Formulas (Remember: SOHCAHTOA]  pposite Sin e hypotenuse hypotenuse adjacent opposite Cosine hypotenuse adjacent opposite' Tan gent . adjacent sudharsar Area ofa Triangle  bh A= 10. Area of Rectangle A=bh 11. Area of Parallelogram 4=bh १० Area and Circumference of Circles A = 1T2 C= २r - ShareChat
#🤔 Unknown Facts #✍ எக்ஸாம் குறிப்பு
🤔 Unknown Facts - DERIVATIOM OF ALTITUDE OF TRIANGLE triangle is the line The altitude of drawn frow one vertex perpendicularto its opposite side | trianel  The altitudes of d Intersect at 4 common point the orthocenter orthocenter @sudharsan Let Ar area of the triangle Ar = Y(base)(height) Given base and height, area of triangle Va(b)(h) AT = Ar = '(a)(aa) 2AT 04 24- Qb 2A1 _ DERIVATIOM OF ALTITUDE OF TRIANGLE triangle is the line The altitude of drawn frow one vertex perpendicularto its opposite side | trianel  The altitudes of d Intersect at 4 common point the orthocenter orthocenter @sudharsan Let Ar area of the triangle Ar = Y(base)(height) Given base and height, area of triangle Va(b)(h) AT = Ar = '(a)(aa) 2AT 04 24- Qb 2A1 _ - ShareChat
#🤔 Unknown Facts #✍ எக்ஸாம் குறிப்பு
🤔 Unknown Facts - upper Triangular Matrix square matrix said to be a Upper triangular matrix if  aij =0, if i >j (12 0 1  711 B= 021 ` 022 023 LLo 033_ 039 017 02] 1 @sudharsar 10 Lower Triangular Matrix  square matrix said to be a Lower triangutar matrix if   ೩ij =0, if i < j  011 B= 021 022 0131 _ 031 032 upper Triangular Matrix square matrix said to be a Upper triangular matrix if  aij =0, if i >j (12 0 1  711 B= 021 ` 022 023 LLo 033_ 039 017 02] 1 @sudharsar 10 Lower Triangular Matrix  square matrix said to be a Lower triangutar matrix if   ೩ij =0, if i < j  011 B= 021 022 0131 _ 031 032 - ShareChat